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Modulation instability and solitons on a cw background in an optical fiber
with higher-order effects
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We construct the Lax pair for a higher-order nonlinear Schro¨dinger equation that includes terms accounting
for the third-order dispersion, the self-steepening effect, and the delayed nonlinear response effect. Two exact
analytic solutions that describe~i! modulation instability and~ii ! soliton propagation on a continuous wave
background are obtained by using the Darboux transformation. In addition, we analyze the amplification-
absorption and quintic nonlinearity effects on the second solution in the adiabatic approximation.
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I. INTRODUCTION

The propagation of ultrashort pulses in optical fibers
the form of optical solitons is receiving growing attentio
with a view to much potential application of solitons in lon
distance communications, optical switching devices, a
pulse shaping in laser sources. The possibility of compen
ing for the temporal broadening of a short pulse in t
anomalous-dispersion regime of fibers by using nonlinea
~thus forming a so-called bright soliton! was first pointed out
by Hasegawa and Tappert in 1973@1#. This prediction was
subsequently confirmed by several experiments@2#. At the
same time Hasegawa and Tappert proposed that in the
mal dispersion regime of the fiber, dark solitons might pro
gate in the form of dips embedded in a continuous-wa
~cw! background@3#.

The mathematical description of these solutions is sp
fied by solving the nonlinear Schro¨dinger ~NLS! equation

i
]q

]t
1«

]2q

]x2
12uqu2q50, «561, ~1!

by the inverse-scattering transform method with vanish
@4# and nonvanishing@5# boundary conditions for the anoma
lous («51) and normal («521) dispersion regimes, re
spectively.

Kawata and Inoue@6# has discussed Eq.~1! under nonva-
nishing boundary conditions in the anomalous-dispersion
gime («51) by employing the inverse-scattering transfo
scheme. As a particular result, they obtained an exact s
tion that describes the evolution of one soliton on a cw ba
ground. Subsequently, Ma@7# derived a special case of
more general solution by using the inverse-scattering te
nique and discussed the two-soliton interaction. La
Akhmediev et al. @8# and Adachiharaet al. @9# also calcu-
lated this solution by using two different direct integratio
methods. The first was based on an algebraic ansatz, an
second used Ba¨cklund transformation. On the other han
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Hasegawa and Kodama@10# has already numerically ana
lyzed the influence of a cw background on the behavior o
soliton pulse. They have observed that when the cw ba
ground was in phase with the solitonic pulse, a certain pu
compression~amplification! was achieved. Akhmediev an
Wabnitz @11# suggested, for detecting the phase of a soli
pulse, to mix it with a cw background. More recently, N
Bélanger and P.-A. Be´langer@12# obtained an exact analyti
cal expression forn-bright solitons on a cw background b
using the Hirota method and discussed the two-soliton in
action.

However, it should be noted that all of these discussio
are based on the NLS equation. If optical pulses are sho
the standard NLS equation becomes inadequate. S
higher-order effects, such as third-order dispersion, s
steepening, and nonlinear response effects, will play imp
tant roles in the propagation of optical pulses. In order
understand such phenomena, Kodama and Hasegawa@13,14#
proposed a higher-order nonlinear Schro¨dinger ~HNLS!
equation

]q

]t
5 i S a1

]2q

]x2
1a2uqu2qD 1a3

]3q

]x3
1a4

]~ uqu2q!

]x

1a5q
]uqu2

]x
, ~2!

where q is the slowly varying envelope of the pulse
a1 ,a2 ,a3 ,a4, and a5 are the real parameters related
group velocity dispersion~GVD!, self-phase modulation
~SPM!, third-order dispersion~TOD!, self-steepening, and
delayed nonlinear response effect, respectively.

In recent years many authors have analyzed the HN
equation from different points of view~e.g., Painleve´ analy-
sis, Hirota direct method, Ablowitz-Kaup-Newel-Seg
~AKNS! method, inverse-scattering transform, Ba¨cklund
transform, and conservation laws! and there have been man
literatures giving the bright soliton@15–22# solution and
dark soliton@23–25# solution for HNLS equation. Particu
larly, there have recently been several articles giv
W-shaped solitary wave solution in the HNLS equati
@26,27#. However, for all bright soliton or solitary wave so
lutions mentioned above, they are solved under the vanish
©2003 The American Physical Society03-1
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boundary conditions. How to find the exact and new-ty
solutions for an HNLS equation under the nonvanish
boundary conditions is an interesting work. Such an atte
appears in this paper.

This paper is organized as follows. In Sec. II, we fi
follow the AKNS formalism to extend the Lax pair fo
HNLS ~Hirota type! equation to more general form by intro
ducing a real parameterm. And fundamental Darboux trans
formation@28,29# of the equation is presented on the basis
this Lax pair. In Sec. III, two exact solutions that describe~i!
modulation instability and~ii ! soliton propagation on a con
tinuous wave background are given by using Darboux tra
formation. And we show how the higher-order terms infl
ence these two solutions. In Sec. IV, we analyze how
amplification-absorption and quintic nonlinearity effects
fect the second solution in the adiabatic approximation. T
main results are summarized in Sec. V.

II. LAX PAIR FOR THE HNLS EQUATION AND ITS
DARBOUX TRANSFORMATION

By settinga252m2a1 , a456m2a3 , a41a550 in Eq.
~2!, we get an integrable Hirota equation as follows@30#:
t-

f
a

o

b-
ng
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]q

]t
5 i S a1

]2q

]x2
1a2uqu2qD 1a3

]3q

]x3
1a4uqu2

]q

]x
. ~3!

Equation ~3! has been investigated in the form of solito
solution with vanishing boundary conditions by several a
thors @29–31#. Here we concentrate on discussing it wi
nonvanishing boundary conditions by using Darboux tra
formation.

By employing the AKNS method one can construct t
linear eigenvalue problem for Eq.~3! as follows:

cx5Uc, ~4!

c t5Vc, ~5!

where

c5~c1 ,c2!T.

HereU andV can be given in the forms

U5lJ1P,J5S 1 0

0 21D , P5S 0 2mq

mq̄ 0 D , ~6!
V54a3l3S 1 0

0 21D 24l2S 2
ia1

2
ma3q

2ma3q̄
ia1

2

D 12ilS 2 im2a3uqu2 2ma1q1 ima3qx

ma1q̄1 ima3q̄x im2a3uqu2 D
1S ia1m2uqu22a3m2~qq̄x2q̄qx! 2 ima1qx2ma3qxx22a3m3ququ2

2 ima1q̄x1ma3q̄xx12a3m3q̄uqu2 2 ia1m2uqu21a3m2~qq̄x2q̄qx!
D , ~7!
wherem is a real constant. Obviously, settinga350 Eqs.~6!
and~7! will give the Lax pair of NLS equation. The compa
ibility condition Ut2Vx1@U,V#50 gives rise to Eq.~3!. In
general, the Lax pair assures the complete integrability o
nonlinear system, and is especially used to obtain
N-soliton solution by means of inverse-scattering transf
mation method. Here based on the Lax pair~6! and ~7!, we
solve Eq.~3! by using the Darboux transformation and o
tain two new types of solitary wave solutions by choosi
the periodic initial ‘‘seed’’ solution.

Consider the Darboux transformation of Eq.~3!,

w85~lI 2S!w,S5HLH21,L5diag~l1 ,l2!, ~8!

whereH is a nonsingular matrix, requiring

wx
85U8w8, U85lJ1P8, P85S 0 2mq8

mq̄8 0
D .

~9!
a
n

r-

Combining Eqs.~4!, ~8!, and~9!, we obtain the Darboux
transformation for Eq.~3! in the form

P85P1JS2SJ. ~10!

It is easy to verify that, if (w1 ,w2)T is a solution of Eqs.~4!

and ~5! corresponding tol5l1, then (2w̄2 ,w̄1)T is also a
solution of Eqs.~4! and~5! and the eigenvaluel is replaced
by 2l̄1, then we have

L5S l1 0

0 2l̄1
D , H5S w1 2w̄2

w2 w̄1
D ,

D5detuHu5uw1u21uw2u2,

Si j 52l̄1d i j 1
~l11l̄1!w i w̄ j

D
~ i , j 51,2!. ~11!

From Eqs.~6!, ~9!, ~10!, and~11!, we have
3-2
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q85q2
2

m
S12,q̄85q̄2

2

m
S21. ~12!

Thus we obtain the fundamental expression of Darbo
transformation. That is, ifq is a solution of Eq.~ 3!, q8 is
also a solution of Eq.~3!. Therefore, we may viewq as a
‘‘seed.’’

III. EXACT SOLUTIONS

In this section, as an example of Darboux transformati
we give two resulting explicit solutions of an HNLS equatio
that describe~i! modulation instability and~ii ! soliton propa-
gation on a continuous wave background.

Here we take the initial seedq5a expi(At1Bx) and we
require

a~A1B2a11B3a32Ba2a42a2a2!50. ~13!

To solve Eqs.~4! and ~5!, let w15 f 1expi(At1Bx), w25 f 2,
then Eqs.~4! and ~5! become

f 1,x1 iB f 15l f 12ma f2 ,

f 2,x5ma f12l f 2 ,

iA f 11 f 1,t5a f 12b f 2 ,

f 2,t5b f 12a f 2 .

By solving the equations above, we obtain

w15~C1 expu11C2 expu2!expi ~At1Bx!,
~14!

w25C3 expu11C4 expu2 ,

where

u15~2 iB1z11 ih1!x/21~2 iA1z21 ih2!t/2,

u25~2 iB2z12 ih1!x/21~2 iA2z22 ih2!t/2,

l5
1

2
~l11 il2!,

and the expressions for real numbersz1 , h1 , z2, andh2 are
presented in formula~17!, and the relations among the co
stantsC1 , C2 , C3, andC4 are given as follows:

C25~L1 iM !C4 , C35~L1 iM !C1 .

Here for simplicity, we takeuC1u5uC4u, where

L5
2am~l11z1!

~l11z1!21~l22B1h1!2
,

M5
22am~l22B1h1!

~l11z1!21~l22B1h1!2
.

02660
x

,

Substituting expression~14! into Eq. ~12! and using formula
~11!, we have the following solution:

q5
G

F
expi ~At1Bx!, ~15!

and its corresponding nonlinear phase shiftf(x,t) is in the
form

f~x,t !5arctanS D2 sinhJ1D4 sinQ

D1 coshJ1D3 cosQ D , ~16!

where

G5D1 coshJ1 iD 2 sinhJ1D3 cosQ1 iD 4 sinQ,

F5D5 coshJ1D6 cosQ,

J5z1x1z2t, Q5h1x1h2t,

D15am~11L21M2!22l1L,D252l1M ,

D352amL2l1~11L21M2!, D452l1~12L22M2!,

D55m~11L21M2!, D652mL, ~17!

z11 ih15A2B224~2l21a2m21 iBl!,

z21 ih25A2A224~b22a21 iAa!,

a54a3l312m2a2a3l1 i ~2a1l21a1m2a212Ba3m2a2!,

b54maa3l212a3m3a32ama3B22ama1B

1 i2mal~a3B1a1!.

Herel1 , l2 , z1 , h1 , z2 , h2 are real numbers. Solution~15!
has some novel properties. Here we mainly discuss th
types of solitary wave solutions under the following par
metric conditions.

~A! In case ofa50. i.e., the initial seed is zero, solutio
~15! becomes the bright solution as follows:

q52
l1

m
sechJ expiQ, ~18!

where

J5l1x1l1@a3~l1
223l2

2!22a1l2#t,

Q5l2x1@a3l2~3l1
22l2

2!1a1~l1
22l2

2!#t.

herea252m2a1 ,a456m2a3, i.e., three parameters are a
bitrary amonga1 ,a2 ,a3 ,a4. The solution had been exten
sively discussed by other authors@30#. Here it is only an
example obtained by Darboux transformation.

~B! For aÞ0, the initial ‘‘seed’’ is periodic. And for sim-
plicity, we take l25B50 and correspondingly have con
straint conditionA5a2a2 from Eq.~13!. And from Eq.~17!,
we have
3-3



e

-
d
a

y

o
T
o

e

er
s
to
d
S
t
n
in
1
S
f
m

o
I

y
h

or
ess

a

e
of

ga-
e,
d

i-

y

-

XU et al. PHYSICAL REVIEW E 67, 026603 ~2003!
z11 ih15Al1
224a2m2.

Here we should note that solution~15! is not significant for
4m2a22l1

250. Therefore, the following two cases will b
investigated mainly.

~i! In the case of 4m2a22l1
2.0, solution~15! becomes

as follows:

q5
G

F
expi ~a2a2t !,

G5D1 coshJ1 iD 2 sinhJ1D3 cosQ,

F5D5 coshJ1D6 cosQ,

J5z2t,Q5h1x1h2t,

h1
254a2m22l1

2 , ~19!

h25a3h1~2a2m21l1
2!,

z150, z252a1h1l1 ,

D15
1

am
~h1

222a2m2!, D252
1

am
h1l1 ,

D352l1 , D552m, D65
1

a
l1 .

By analyzing solution~19!, we note that this solution is pe
riodic in the space coordinate and aperiodic in the longitu
nal variable as shown in Fig. 1. Therefore, it is considered
a modulation instability~MI ! process. MI is the process b
which a cw beam becomes unstable@32#. In general, a whole
class of solutions of the NLS equation that are periodic
quasiperiodic both in space and time dimensions exists.
aperiodic solution in time may be viewed as a homoclinic
separatrix trajectory in the infinite-dimension phase spac
the solutions of Eq.~3! with periodic boundary conditions in
space@see, for example, Ref.@33# and references therein#,
i.e., the homoclinic orbit or separatrix trajectory is charact
ized by a single mode which limits to the plane wave at
→6` @34#. To our best knowledge, MI was predicted
occur in optical fibers@35# and was experimentally observe
@36#. And the exact analytic expression for MI in the NL
equation was obtained@37#. However, in this paper, an exac
analytic expression for MI in the HNLS equation are give
Figure 1~b! shows the propagation of this homoclinic orbit
the presence of higher-order effects. As seen from Fig.~a!
and 1~b!, when compared with the homoclinic orbit of NL
equation as given in Refs.@33,34#, the main characteristics o
the homoclinic orbit in the presence of higher-order ter
(a3Þ0) are essentially the same except for the change
group velocities. And it is interesting to find that the sign
a3 determines the propagation direction of solitary wave.
application, the homoclinic orbit of modulation instabilit
can be used to produce a strain of optical solitons. Anot
02660
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potential usage of the modulation instability effect is f
code generation and decoding in code division multiacc
communication systems@33#.

~ii ! In the case of 4m2a22l1
2,0, solution~15! becomes

the following form:

q5A expi ~a2a2t !,
~20!

A52z1

z1 cosQ1 il1 sinQ

l1 coshJ2a cosQ
2a,

where

J5z1x1z2t,Q5h2t,

z1
25l1

22a2,z25a3z1~2a2m21l1
2!,

h25a1z1l1 .

Figures 2~a!, 2~b!, and 2~c! show the propagation of such
bright soliton for different background amplitudea. As one
can see from Fig. 2, solution~20! represents a bright puls
that propagates on a cw background in the presence
higher-order effects. The main characteristic of the propa
tion is the periodic peaking property of the field amplitud
which can be very strong without splitting of the pulse. An
solution ~20! with a350 of course gives such a bright sol
ton plus cw background for the NLS equation.

FIG. 1. Evolution of a homoclinic orbit of modulation instabilit
with a50.5, m51, l150.5, a150.5, a251. ~a! The absence of
higher-order effectsa35a45a550; ~b! the presence of higher
order effectsa350.18, a451.08, a5521.08.
3-4
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Note that thea3 dependence arises only through the
genvaluesz2 from @z25a3z1(2a2m21l1

2)#. Thus the effect
of the higher-order terms on the solitary wave solution
simply changing the coefficients of the coordinatet. This
shows that, when compared with solitary wave solution
the NLS equation (a350), the main characteristics of th
solution in the presence of higher-order terms are essent
the same except for the change of soliton velocities. It clea
shows the change of velocity as expected. In addition,
also find that the sign of the third-order dispersion (a3) de-
termines the propagation direction of solitary wave.

It is also interesting to note that

E
2`

1`

@ uq~x,t !u22uq~6`,t !u2#dx58z1 , ~21!

which is exactly the energy of the one-soliton solution of E
~3!. In contrast, the quantity

E
2`

1`

uq~x,t !2q~6`,t !u2dx58z114z1a~cosQ!I ,

~22!

where

FIG. 2. Propagation of the cw soliton~20! for m50.5, l1

5A2, a150.5, a250.25,a3520.10,a4520.60,a550.60, and
for three cw background amplitudes:~a! a5

1
100, ~b! a5

1
10, ~c! a

5
1
2 .
02660
-

s

f

lly
ly
e

.

I 5

4 arctan
A~l11a cosQ!

A~l12a cosQ!

Al1
22a2 cos2Q

~23!

shows that at-periodic energy exchange is performed b
tween the pulse and the cw background.

In addition, we should note that the solution takes t
particular form at any locationt05@(114n)p/2h2# for n
50,1,2, . . . ,

q5expi ~a2a2t !~2a12i z1 sechJ!. ~24!

Therefore, this solution can be generated by coherently a
ing in quadrature a bright soliton to a cw background.

IV. AMPLIFICATION-ABSORPTION AND QUINTIC
NONLINEARITY EFFECTS

In this section we calculate the adiabatic evolution of t
parametersa, z1, andl1 of the solution II in the presence o
amplification-absorption terms and quintic nonlinearity f
Eq. ~3!. To the end, the following equation:

i
]q

]t
1S a1

]2q

]x2
1a2uqu2qD 2 ia3

]3q

]x3
2 ia4uqu2

]q

]x
5 iR~q!,

~25!

where

R~q!5g0q1g1qtt2g2ququ22g3ququ4

is considered.
The parameterg0 describes a linear amplification (g0

.0) or absorption (g0,0), the parameterg1>0 is a gain
dispersion term that is due to a finite gain bandwidth, a
g2>0 stands for a phenomenological model of gain satu
tion or a two-photo absorption effect andg3 that is propor-
tional to the fifth-order susceptibility stands for a model
gain saturation. Fora35a45g350, we recover the equa
tion investigated by Gagnon@38#.

As usual in the adiabatic approximation, we consider t
R(q) is small and assume that the wave evolution is close
shape to expression~20!, where the parametersa, z1, andl1
are considered as functions oft. Therefore, here the variabl

d

dtE2`

`

uqu2dx52ReE
2`

`

q̄R~q!dx ~26!

of the first conserved integral is needed for one to determ
the evolution of the parameters of the exact solution.

It is important to point out that the integrals in Eq.~26!
contain a contribution that is due to the cw background. T
contribution can easily be identified by taking note that t
evolution of the cw part is completely determined by t
parametera and can be calculated exactly by solving E
~25!. The result is

qcw5a~ t !expi S E
0

t

a2a2dtD , ~27!
3-5



e
f
a
f

-

-

part

ly

to

s of

-
in-
im-

he

XU et al. PHYSICAL REVIEW E 67, 026603 ~2003!
wherea(t) satisfies

da~z!

dx
5g0a2g2a32g3a5. ~28!

We can eliminate the infinite cw contribution in Eq.~26! by
using relation~28!. The remaining terms in Eq.~26! then
give the following evolution equation ofz1(z):

dz1~z!

dx
52g0z12z1

3~g114g2!
W

l1
22a2 cos2 Q

2
8

3
g2z1

3

24g2a2z11
4

15
g3z1l1

2~12l1
227a2!2g3D,

~29!

where

W5
1

2
l1

2a cosQI 1
1

3
~2l1

21a2 cos2 Q!,

D5M11M21M3 ,

M1520l1
2

z1
3

~l1
22a2 cos2 Q!2

~l1
42a4 cos2 Q!,

M254a4
z1

~l1
22a2 cos2 Q!2

~cos2 Q!~l1
4 cos2 Q22l1

4

1a4 cos2 Q!112z1
5l1

4aI cosQ
1

~l1
22a2 cos2 Q!2

,

M356z1
3a3l1

2I cosQ
1

l1
22a2 cos2 Q

1
2

15
a4

z1

l1
22a2 cos2 Q

~53l1
217a2 cos2 Q!,

and I is given by Eq.~23!.
In addition, we assume that the relations

l1
25z1

21a2, z25a3z1S 3a2

2
1z1

2D ~30!

remain valid in the considered approximation.
Relations~28!–~30! provide the adiabatic evolution of th

parametersa, z1, and l1, respectively, in the presence o
amplification-absorption terms and quintic nonlinearity
perturbation. Fora50 we can give the adiabatic evolution o
the fundamental one-soliton solution of Eq.~3!.

Exact solutions of Eqs.~28!–~30! can be obtained only
when g15g25g350. In this case the field amplitude de
creases for a purely absorbing medium (g0,0) or increases
for a purely amplifying one (g0.0) according to the expo
nential lawsa(z)5a(0)exp(g0t) andz1(z)5a(0)exp(2g0t).
02660
s

The pulse part increases or decreases faster than the cw
because of the factor of 2 in the exponential.

For an amplifying medium (g0.0) with gain saturation,
typical results are plotted in Fig. 3 by solving Eqs.~28!–~30!
numerically. When the case ofg1.0 andg25g350 recov-
ers the case of Fig. 5 in Ref.@38# where the cw part is
uniformly amplified, while the pulse part amplifies rapid
before vanishing completely for larget (z1→0). The result
is a growing cw asymptotic state that evolves according
a(z)5a(0)exp(g0t). As depicted in Fig. 3~a!, the evolution
is similar forg1.0 andg2.0 butg350, except that the cw
asymptotic state now saturates. And the small oscillation
a andz1 can be seen clearly from Fig. 3~a!, which is consis-
tent with the results in Ref.@38#. However, when we take
g3Þ0 as shown in Fig. 3~b!, these small ripples are elimi
nated. Therefore, we may infer that it is the quintic nonl
earity effect that makes the pulses more stable, which is
portant to the propagation of nonlinear pulses.

V. CONCLUSIONS

We have obtained two exact analytic solutions of t
HNLS equation that describe~i! the homoclinic orbit of MI

FIG. 3. ~Color online! Adiabatic evolution of the parametersa,
z1, and l1 according to relations~28!–~30! for g050.1, g1

50.01, and~a! g250.002,g350, ~b! g250.002,g350.0003.
3-6
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and ~ii ! soliton propagation on a continuous wave bac
ground by using the Darboux transformation. We also sh
how the higher-order terms influence these two solutions.
have also shown that the presence of higher-order term
general, changes the velocity of the solitary wave with
changing its shape and that the sign of the third-order dis
sion (a3) determines the propagation direction of solita
waves. From the discussion above and from the relati
a252m2a1 , a456m2a3, anda41a550, we can see tha
it is the exact balance among the third-order dispersion,
self-steepening effect, and the delayed nonlinear respo
effect that make the pulse more stable for the second s
tion. Thus the compressed ultrafast pulses may be obta
by this method. Here we have analyzed how t
amplification-absorption and quintic nonlinearity effects
fluence the second solution in the adiabatic approxima
and have pointed out that these small ripples appearin
t.
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Fig. 3~a! as well as in Ref.@38# have been eliminated by
introducing the quintic nonlinearity effect in Eq.~25!. There-
fore, we may infer that it is the quintic nonlinearity effe
that makes the pulses more stable, which is important to
propagation of nonlinear pulses. The analytic result of
present paper will be helpful to know how analytical resu
can be applied to systems with realistic, nonintegra
higher-order terms.
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